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Abstract

An exact solution procedure is formulated for the free vibration analysis of rectangular plates having two
opposite edges simply supported when these edges are subjected to linearly varying normal stresses causing
pure in-plane moments. The other two edges may be clamped, simply supported or free, or they may be
elastically supported. The transverse displacement ðwÞ is assumed as sinusoidal in the direction of loading
ðxÞ; and a power series is assumed in the lateral ðyÞ direction (i.e., the method of Frobenius). Applying the
boundary conditions yields the eigenvalue problem of finding the roots of a fourth order characteristic
determinant. Care must be exercised to obtain adequate convergence for accurate vibration frequencies, as
is demonstrated by two convergence tables. Some interesting and useful results for vibration frequencies
and contour plots of their mode shapes are presented for plates having all nine possible combinations of
clamped, simply supported or free unloaded edges. Particularly interesting is that for some of the edge
conditions, applying opposite in-plane edge moments causes the fundamental frequency to increase
initially.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Transverse free vibrations of thin plates which are subjected to edge loads acting in their
midplanes are areas of research which received a great deal of attention in the past century [1].
Most of the work has dealt with rectangular plates having uniformly distributed in-plane edge
loads because the governing differential equations of motion have constant coefficients, yielding
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exact solutions for frequencies straightforwardly when two opposite edges of the plates are simply
supported.
Of course, a plate may be loaded at two opposite edges by non-uniform, in-plane axial forces

ðNxÞ; the first variation from the uniform loading being one which varies linearly. A special case of
this is a pure, in-plane bending moment. When the in-plane stresses vary throughout the plate the
analysis is more formidable, and exact solutions are much more difficult to achieve. One finds few
results for such plate vibration problems.
The present work derives exact solutions for the free vibration of a rectangular plate loaded at

its simply supported edges by pure in-plane bending moments caused by normal stresses varying
linearly along the edges. For the case of opposite edges being simply supported, a variables
separable solution exists, which reduces the partial differential equation to an ordinary one having
variable coefficients. This is solved by the classical power series method of Frobenius, and the
convergence of the series is established for some representative cases. The present work presents
novel, exact solutions for the free vibration frequencies and their corresponding mode shapes for
all nine possible combinations of clamped, simply supported or free unloaded edges.

2. Analysis

A rectangular plate of thickness h; having lateral dimensions a � b; is shown in Fig. 1. For
purposes of description, a notation will be adopted as follows. The symbolism S–F–S–C, for
example, will identify a rectangular plate with edges x ¼ 0; y ¼ 0; x ¼ a; y ¼ b having simply
supported, free, simply supported, and clamped boundary conditions. Two opposite edges (x ¼ 0
and x ¼ a) are simply supported, and are subjected to in-plane bending moments M caused by
normal stresses sx which vary as

sx ¼ �s0 1� 2
y

b

� �
; ð1Þ

where s0 is the tensile stress at y ¼ b; as shown. The stress is related to the in-plane moment by

s0 ¼
6M

hb2
: ð2Þ

The other two edges (y ¼ 0 and b) may be either clamped, simply supported or free, and have no
in-plane stresses. The in-plane stress of Eq. (1) acts throughout the plate and, together with the
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Fig. 1. An S–F–S–C rectangular plate loaded by in-plane moment, with co-ordinate convention.
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other stress components sy ¼ txy ¼ 0; are a simple, but exact, solution of the plane elasticity
problem.
Assuming that the plate is thin, has uniform thickness, and that its material is homogeneous,

isotropic and linearly elastic, the equation of motion for the transverse displacement w is well
known as (cf., Leissa [1])

Dr4w þ rh
@2w

@t2
¼ sxh

@2w

@x2
; ð3Þ

where D � Eh3=12ð1� n2Þ is the flexural rigidity of the plate, with E being Young’s modulus, and
n being the Poisson ratio. Also, in Eq. (3)r4 ¼ r2r2 is the biharmonic differential operator, with
r2 ¼ @2=@x2 þ @2=@y2 being the Laplacian operator, r is mass density per unit volume, and t is
time.
Introducing non-dimensional co-ordinates x � x=a and Z � y=b; and assuming a solution in the

variables separable form

wðx; Z; tÞ ¼ YmðZÞ sin mpx sinot; ð4Þ

Eq. (3) yields the ordinary differential equation:

Y IV
m � 2b2mY 00

m þ b4m � 6M�ð1� 2ZÞb2m � l2
b

a

� �4
" #

Ym ¼ 0; ð5Þ

where Ym is a function only of Z; bm � mpðb=aÞ; M� � M=D is the nondimensional loading
parameter, and l � oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
is the non-dimensional frequency parameter. Moreover, Eq. (4)

satisfies the simply supported edge conditions of the plate exactly at x ¼ 0 and 1.
A solution to Eq. (5) may be assumed in the form of a power series,

YmðZÞ ¼
XN
n¼0

Cm;nZn; ð6Þ

which leads to the method of Frobenius. Taking derivatives of Ym with respect to Z; substituting
them and Eq. (6) into Eq. (5), and shifting indices, Eq. (5) becomes

XN
n¼0

f½ðn þ 4Þðn þ 3Þðn þ 2Þðn þ 1ÞCm;nþ4 � 2b2mðn þ 2Þðn þ 1ÞCm;nþ2 þ GCm;n�Zn

þ 12b2mM�Cm;nZnþ1g ¼ 0; ð7Þ

where

G � b4m � 6M�b2m � l2
b

a

� �4

: ð8Þ

Equating coefficients of like powers of Z in Eq. (7), one obtains from Z0;

Cm;4 ¼ 1
6
b2mCm;2 � 1

24
GCm;0; ð9Þ
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and from Zn ðn > 0Þ;

Cm;nþ4 ¼
2b2mðn þ 2Þðn þ 1ÞCm;nþ2 � GCm;n � 12b2mM�Cm;n�1

ðn þ 4Þðn þ 3Þðn þ 2Þðn þ 1Þ
: ð10Þ

Eqs. (9) and (10) are the recursion relationships for Cm;n when nX4 to the first four Cm;n:
Thus, Cm;0; Cm;1; Cm;2; and Cm;3 are arbitrary coefficients, which will be used in two boundary

conditions at each side (Z ¼ 0 and 1), and the other coefficients Cm;n for nX4 are expressed in
terms of them. Typically, the four boundary conditions yield four homogeneous equations with
unknown Cm;0; Cm;1; Cm;2; and Cm;3: To obtain a non-trivial solution of the system, the
determinant of the matrix of the coefficients is set to zero for the non-dimensional frequencies ðlÞ:
One sees that the elements of the matrix have infinite series in them. Substituting each l back into
the four homogeneous equations yields the corresponding eigenvectors, Cm;n=Cm;0 (with
n ¼ 1; 2; 3), which determines the corresponding mode shape.
There are three physically meaningful types of boundary conditions along the edges Z ¼ 0 and 1

for which this solution may be used [1]:

clamped : w ¼ 0 and
@w

@y
¼ 0 ) Ym ¼ Y 0

m ¼ 0; ð11aÞ

simply supported : w ¼ 0 and My ¼ 0 ) Ym ¼ Y 00
m ¼ 0; ð11bÞ

free : My ¼ 0 and Vy ¼ 0 ) Y 00
m ¼ Y 000

m þ m2p2ð2� nÞY 0
m ¼ 0: ð11cÞ

Substituting Eq. (6) into one of the sets of boundary condition (11) for each of the two edges,
Z ¼ 0 and 1, yields the fourth order characteristic determinant described earlier, from which the
eigenvalues (non-dimensional frequencies) may be found. In certain special cases, the determinant
quickly reduces to a lower order one.

3. Convergence study

The exact solution functions given by Eq. (6) require summing an infinite series. Depending
upon the degree of accuracy which one wants to have in numerical calculations, the upper limit of
the summations is truncated at a finite number ðNÞ; which may be as large as needed. This
procedure is no different than that followed in the evaluation of other transcendental functions
arising in the exact solutions of other boundary value problems (e.g., Bessel functions, Hankel
functions).
To examine the convergence rate of the power series of Eq. (6), as well as to establish the

correctness of the results, the present equations are first applied to a special case of free vibrations
which has well-known, closed form solution [1,2], the unloaded rectangular plates with two
opposites edges simply supported. In that case M� ¼ 0 in Eq. (5), resulting in constant coefficients
for the ordinary differential equation, and the power series may be represented by trigonometric
and hyperbolic functions of Z: This convergence study is shown in Table 1.
Table 1 shows the convergence of the fundamental non-dimensional frequency parameter

l � oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of unloaded rectangular plates ða=b ¼ 0:4Þ with two opposite edges simply

supported for modes having one half-wave in the x direction ðm ¼ 1Þ and n ¼ 0:3: In the unloaded
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case, there are a total of six types of rectangular plates according to the edge conditions at Z ¼ 0
and 1, which are S–C–S–C, S–C–S–S, S–C–S–F, S–S–S–S, S–S–S–F, and S–F–S–F. It is seen that
for even the fundamental frequencies more than 35 terms are needed to obtain the frequencies
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Table 1

Convergence of the fundamental non-dimensional frequencies l � oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of unloaded rectangular plates with two

opposite edges simply supported for a=b ¼ 0:4; m ¼ 1; and n ¼ 0:3 by the power series method

N S–C–S–C S–C–S–S S–C–S–F S–S–S–S S–S–S–F S–F–S–F

5 — — — — — 6.638

6 — — — 11.22 11.23 4.510

7 — — — 11.22 11.23 7.022

8 — — — 11.51 11.11 6.267

9 — — — 11.51 11.11 7.037

10 — — — 11.44 10.80 6.590

11 — — — 11.44 10.80 7.027

12 — — — 11.45 10.58 6.678

13 — — — 11.45 10.58 7.032

14 — — — 11.45 10.40 2.632

15 0.9646 — — 11.45 10.40 7.061

16 — — — 11.45 10.27 4.403

17 3.892 2.956 1.089 11.45 10.27 7.132

18 — — — 11.45 10.19 —

19 5.674 4.831 3.435 11.45 10.19 7.281

20 — — — 11.45 10.15 7.553

21 7.254 6.411 4.958 11.45 10.15 —

22 — — — 11.45 10.13 —

23 8.711 7.865 6.302 11.45 10.13 7.961

24 — — — 11.45 10.13 —

25 10.02 9.195 7.526 11.45 10.13 8.465

26 — — — 11.45 10.13 —

27 11.09 10.34 8.602 11.45 10.13 8.980

28 — — — 11.45 10.13 —

29 11.78 11.18 9.454 11.45 10.13 9.408

30 12.39 — — 11.45 10.13 —

31 12.06 11.60 9.966 11.45 10.13 9.660

32 12.17 11.82 10.32 11.45 10.13 9.815

33 12.12 11.73 10.15 11.45 10.13 9.742

34 12.14 11.76 10.21 11.45 10.13 9.767

35 12.13 11.75 10.18 11.45 10.13 9.758

36 12.14 11.75 10.19 11.45 10.13 9.761

37 12.13 11.75 10.19 11.45 10.13 9.760

38 12.13 11.75 10.19 11.45 10.13 9.760

39 12.13 11.75 10.19 11.45 10.13 9.760

40 12.13 11.75 10.19 11.45 10.13 9.760

41 12.1347 11.7502 10.1888 11.4487 10.1259 9.7600

Exact 12.1347 11.7502 10.1888 11.4487 10.1259 9.7600

Notes: N total number of polynomial terms used in the power series method; the symbol (—) means that no roots were

found; the non-dimensional frequencies in bold indicate the best convergent values in each column with the smallest N :
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accurately to four significant figures, with the exception of S–S–S–S and S–S–S–F plates. Table 1
also shows that as more terms are taken the frequencies converge to their exact values [2] up to six
digits.
The bold numbers in the Table 1 are those beyond which the fourth digit does not change as N

increases. Data are not given in Table 1 for certain small numbers of terms because of the
difficulty of the computer in establishing the roots of the frequency determinant in these cases. It
is also interesting to note that the convergence is not monotonic. That is, an eigenvalue ðlÞ
oscillates about the exact value as N is increased, rather than approaching it from one direction.
Table 2 exhibits the convergence of the fundamental l of square plates ða=b ¼ 1Þ for modes

having one half-wave in the x direction ðm ¼ 1Þ and n ¼ 0:3; when the load applied is one-half of
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Table 2

Convergence of non-dimensional fundamental frequencies l � oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of rectangular plates having in-plane

moments acting on two opposite simply supported edges for a=b ¼ 1; m ¼ 1; M=Mcr ¼ 0:5; and n ¼ 0:3 by the power

series method

N S–C–S–C S–C–S–S S–C–S–F S–S–S–C S–S–S–S S–S–S–F S–F–S–C S–F–S–S S–F–S–F

7 — — 42.69 29.38 32.86 40.53 84.80 169.5 —

8 — — 58.80 — — — — — —

9 158.1 204.7 129.4 15.78 10.21 7.530 3.793 — —

10 — — 54.39 — — — — — —

11 — — 23.16 53.85 56.18 59.62 6.459 4.570 160.9

12 — — 45.33 24.64 24.11 23.33 12.09 — —

13 198.1 204.7 63.38 15.31 13.29 13.71 8.141 6.861 4.770

14 — — — 8.770 — — 9.650 9.727 —

15 — — 54.87 74.71 75.24 76.64 8.842 7.985 6.645

16 — — 26.62 10.78 43.37 40.92 9.186 8.694 9.121

17 253.8 256.0 45.77 20.29 20.46 22.24 9.037 8.362 7.590

18 — — 53.54 18.11 15.14 13.78 9.096 8.496 8.110

19 — — 102.3 20.14 20.44 92.70 9.073 8.443 7.876

20 — — 50.31 18.13 15.24 14.12 9.081 8.462 7.964

21 18.10 7.045 27.15 19.20 17.99 18.87 9.079 8.455 7.931

22 — — 21.30 18.38 16.93 16.59 9.079 8.458 7.943

23 24.49 19.20 33.34 18.95 17.28 17.30 9.079 8.457 7.939

24 29.31 34.78 25.93 18.88 17.09 16.90 9.079 8.457 7.940

25 26.74 23.65 30.34 18.92 17.21 17.14 9.079 8.457 7.940

26 27.83 26.51 28.98 18.88 17.15 17.03 9.079 8.457 7.940

27 27.32 25.04 29.05 18.92 17.17 17.07 9.079 8.457 7.940

28 27.53 25.63 29.24 18.90 17.17 17.06 9.079 8.457 7.940

29 27.45 25.38 29.09 18.91 17.17 17.06 9.079 8.457 7.940

30 27.48 25.48 29.16 18.90 17.17 17.06 9.079 8.457 7.940

31 27.47 25.44 29.14 18.91 17.17 17.06 9.079 8.457 7.940

32 27.47 25.46 29.14 18.91 17.17 17.06 9.079 8.457 7.940

33 27.47 25.45 29.14 18.91 17.17 17.06 9.079 8.457 7.940

34 27.47 25.45 29.14 18.91 17.17 17.06 9.079 8.457 7.940

Notes: N total number of polynomial terms used in the power series method; the symbol (—) means that no roots were

found; the non-dimensional frequencies in bold indicate the best convergent values in each column with the smallest N :
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the critical buckling value ðM=Mcr ¼ 0:5Þ: For Ma0; all nine cases of edge conditions are
distinct. Mcr is obtained by setting l ¼ 0 in Eq. (8).

4. Natural frequencies and mode shapes

Some results will now be presented which show the effects upon the plate vibration frequencies
and mode shapes when the in-plane moment ðMÞ is applied, and increased. To do this properly
and meaningfully, one must first establish the critical (i.e., lowest) buckling load ðMcrÞ; which is
the smallest M which causes o (and l) to approach zero. Larger values of M are physically
meaningless, and will therefore not be considered.
Table 3 shows the nondimensional critical buckling moments M�

cr � Mcr=D for n ¼ 0:3; aspect
ratios a=b ¼ 0:5; 1, and 2, and all nine possible edge conditions. The numbers in parentheses are
the numbers of half-waves in the critical buckling mode in the x direction. Thus, for example, a
square plate ða=b ¼ 1Þ having its unloaded edges clamped has two half-sine-waves in the x

direction in its critical buckling mode shape, with a node line ðx ¼ a=2Þ at its middle. The critical
buckling mode shapes all have a single half-wave in the y direction; that is, no nodal lines parallel
to (or approximately parallel to) the unloaded edges.
Table 4 gives fundamental frequencies l � oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
with aspect ratios a=b ¼ 0:5; 1, and 2,

and n ¼ 0:3 for unloaded plates ðM ¼ 0Þ which have all six possible combinations in edge
conditions. All the fundamental frequencies have (1,1) mode shapes.
Figs. 2–4 show fundamental frequencies l � oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
as functions of non-dimensional

moment M� � M=D for aspect ratios a=b ¼ 0:5; 1, and 2, respectively, with n ¼ 0:3: The values of
l shown on the ordinate are the non-dimensional fundamental frequencies for no loading ðM ¼
0Þ; which are listed in Table 4. The values of M� for l ¼ 0 shown on the abscissa are the non-
dimensional critical buckling moments, which are given in Table 3.
Fig. 2 shows that the fundamental free vibration mode shapes for a=b ¼ 0:5 all have (1,1) mode

shapes, irrespective of M=D and edge conditions. Fig. 3 describes how, as M approaches the
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Table 3

Non-dimensional critical buckling moments M�
cr � Mcr=D ðn ¼ 0:3Þ

Edge conditions a=b

0.5 1 2

S–C–S–C 65.26 (1) 65.26 (2) 65.26 (4)

S–C–S–S 65.26 (1) 65.26 (2) 65.26 (4)

S–C–S–F 65.24 (1) 65.24 (2) 65.24 (4)

S–S–S–C 42.00 (1) 42.00 (2) 39.38 (3)

S–S–S–S 41.99 (1) 41.99 (2) 39.28 (3)

S–S–S–F 41.98 (1) 41.98 (2) 39.24 (3)

S–F–S–C 11.64 (1) 4.591 (1) 3.646 (1)

S–F–S–S 11.63 (1) 4.327 (1) 2.181 (1)

S–F–S–F 11.63 (1) 4.289 (1) 1.876 (1)

Note: numbers in parentheses are the numbers of half-waves ðmÞ in the buckling mode in the x direction.

J.-H. Kang, H.-J. Shim / Journal of Sound and Vibration 273 (2004) 933–948 939



critical buckling moments, the fundamental free vibration mode shapes for square plates
ða=b ¼ 1Þ change from (1,1) to (2,1) modes, except for S–F–S–C, S–F–S–S, and S–F–S–F plates,
for which the fundamental ones are (1,1) irrespective of M: For relatively long plates ða=b ¼ 2Þ;
the fundamental mode shapes change even more drastically, as seen in Fig. 4. For example, for
S–S–S–C, S–S–S–S, and S–S–S–F plates, the fundamental mode shape changes from (1,1) to (2,1)
to (3,1) as M increases. It is very interesting to note that the fundamental free vibration mode
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Table 4

Non-dimensional fundamental frequencies l � oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for unloaded plates ðn ¼ 0:3Þ

Edge conditions a=b

0.5 1 2

S–C–S–C 13.69 28.95 95.26

S–C–S–S or S–S–S–C 12.92 23.65 69.33

S–C–S–F or S–F–S–C 10.43 12.69 22.82

S–S–S–S 12.34 19.74 49.35

S–S–S–F or S–F–S–S 10.30 11.68 16.13

S–F–S–F 9.736 9.631 9.512

Note: All frequencies have (1,1) mode shapes.

Fig. 2. Fundamental frequencies l � oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
as functions of non-dimensional moment ð� M=DÞ for a=b ¼ 0:5 and

n ¼ 0:3:
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shapes move from (1,1) directly into (4,1) not via (2,1) and (3,1) for S–C–S–S and S–C–S–F plates.
In the case of the S–C–S–C plate, the modes go from (1,1) to (3,1) and then (4,1), skipping the
(2,1) mode. In these cases the skipped modes exist, but they correspond to higher frequencies.
Particularly interesting in Figs. 2–4 is the fact that initially, as M is applied, the fundamental

frequencies of the S–C–S–S, S–C–S–F and S–S–S–F plates increase, instead of decrease, even
though one-half of the plate is in compression. Typically, the presence of compressive in-plane
stresses destabilizes a plate, causing frequencies to decrease, but these are exceptions. For these
three sets of edge conditions, the more constraining of the two unloaded edges (y ¼ 0; see Fig. 1) is
in compression. Nevertheless, as Figs. 2–4 show, although applying M causes the fundamental
frequencies to increase initially, eventually they decrease with larger M:
To understand better the curve crossing of Figs. 3 and 4, Fig. 5 is added, which shows the first

five frequency parameters ðl=p2Þ versus non-dimensional moment ðM=DÞ for an S–S–S–S square
plate ða=b ¼ 1Þ: For no loading ðM ¼ 0Þ; the first five frequencies correspond to (1,1), (1,2) or
(2,1), (2,2), and (3,1) mode shapes, in that order, in which the frequencies for the (1,2) and (2,1)
modes are degenerated. As M is applied, the frequencies for the modes of (1,1), (2,1), and (3,1)
decrease, but the ones for the other modes (1,2) and (2,2) increase slightly. Eventually, as M is
increased further, the (2,1) frequency curve crosses the (1,1) curve, and the plate buckles in a (2,1)
mode. The (1,1) and (3,1) modes have a higher buckling moments. The (1,2) and (2,2) frequencies
also decrease (beyond the abscissa limit of Fig. 5) and eventually go to zero at a large value of
M=D:
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Fig. 3. Fundamental frequencies l � oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
as functions of non-dimensional moment M� ð� M=DÞ for a=b ¼ 1

and n ¼ 0:3:
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Fig. 5. Frequency parameter l=p2 vs. non-dimensional moment M=D for an S–S–S–S square plate ða=b ¼ 1Þ:

Fig. 4. Fundamental frequencies l � oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
as functions of non-dimensional moment M� ð� M=DÞ for a=b ¼ 2

and n ¼ 0:3:
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Contour plots of the free vibration mode shapes of square plates ða=b ¼ 1Þ for all nine possible
boundary conditions are seen in Figs. 6–8, with end moments M=Mcr ¼ 0; 0.5, 0.95 applied and
n ¼ 0:3: Again, Mcr is the critical buckling moment for each plate, found in Table 3. Figs. 6–8
correspond to the first, second, and third free vibration mode shapes, respectively. The maximum
displacements of all the plots are marked with �:
The contour plots of the first column in Fig. 6 correspond to the frequencies listed in the second

column of Table 4 for unloaded plates ðM ¼ 0Þ; where all the fundamental frequencies have (1,1)
mode shapes. The contour plots of the third column for M=Mcr ¼ 0:95 in Fig. 6 show that as M

approaches Mcr; the first free vibration mode shapes approach the critical buckling mode shapes
listed in the second column of Table 3, except for S–S–S–C, S–S–S–S, and S–S–S–F, where their
critical buckling mode shapes are for (2,1) modes, instead of the (1,1) modes observed in Fig. 6.
It is interesting to note how the contour lines shift downward (i.e., towards the compressive

lateral plate edge) as the end moment M is increased. For the (1,1), (2,1), and (3,1) modes, the
point of maximum displacement moves towards the compressive region of the plate. For the (1,2)
and (1,3) modes, the nodal lines also shift downward (see, for example, the (1,2) mode for the
S–S–S–F plate in Figs. 7 and 8).
The movement of the mode shape contour lines and the point of maximum displacement

downward towards the compressive regions is seen most dramatically for the three cases
(S–C–S–S, S–C–S–F, S–S–S–F) where increasing moment initially increases the fundamental
frequencies. The identifying symbols for these three cases are underlined in Fig. 6. Studying Fig. 6
carefully, one observes that only for these three cases is the point of maximum displacement
towards the upper plate edge when no moment is applied ðM=Mcr ¼ 0Þ: But these are also the
only three cases where the upper edge is less constrained than the lower edge. The downward
movement is demonstrated in Fig. 9, where the edge moments are increased gradually on an
S-S-S-F square plate. As could be expected, with M=Mcr ¼ 0 the maximum displacement is in the
middle of the upper edge, which is free. As moment is applied and increased, the point of
maximum displacement moves downward toward the compression region, crossing into it when
M=Mcro0:5:

5. Concluding remarks

The foregoing work has shown how an exact procedure may be followed to analyze the free
vibrations of rectangular plates having two opposite edges simply supported, with those edges
being subjected to linearly varying normal stresses causing pure in-plane moments. The procedure
was applied to all possible combinations of clamped, simply supported or free edge conditions
applied continuously along the other two edges. Additional, extensive results for the S–F–S–F [3]
and S–C–S–C [4] plates are also available elsewhere.
Assuming a sinusoidal displacement in the x direction resulted in a separation of variables (x

and y), yielding an ordinary differential equation in y which had variable coefficients. An exact
solution of this was obtained in terms of an infinite power series. The infinite series thus generated
represent transcendental functions in the same manner as other commonly used functions
(e.g., trigonometric, hyperbolic, Bessel, Hankel) which are also evaluated by power series, except
that present ones have no ‘‘name’’ assigned to them. Thus, for example, well-known [1,2] exact
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solutions for the frequencies of rectangular plates having two opposite edges simply supported,
without in-plane forces, use trigonometric and hyperbolic functions for Y ðZÞ in Eq. (6). Applying
boundary conditions (11) at the two other edges yields a fourth order determinant, the elements of

ARTICLE IN PRESS

Fig. 6. Free vibration fundamental mode shapes of square plates ða=b ¼ 1Þ with in-plane pure bending for n ¼ 0:3:
(Maximum displacements marked with �:)
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which are Y ðZÞ and/or its derivatives, as in the present problem. The computer evaluating the
trigonometric or hyperbolic functions and their derivatives does so by summing the power series
for these functions. Similarly, well-known exact solutions for circular plates [1] use ordinary and

ARTICLE IN PRESS

Fig. 7. Free vibration second mode shapes of plates with in-plane pure bending for a=b ¼ 1 and n=0.3. (Maximum

displacements marked with �:)
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modified Bessel functions and their derivatives as elements of the frequency determinant, and
these functions are evaluated by summing truncations of infinite power series. As it was shown in
the present work, care must be taken to use a sufficient number of terms of the series to obtain
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Fig. 8. Free vibration third mode shapes of plates with in-plane pure bending for a=b ¼ 1 and n ¼ 0:3: (Maximum

displacements marked with �:)
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accurate numerical results. This, of course, is a consideration when evaluating any functions
expressed as an infinite series.
The convergence of the series, as displayed for example in Tables 1 and 2, is particularly

interesting. It was demonstrated that reasonably accurate results cannot be obtained by simply
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Fig. 9. Movement of fundamental mode contour lines with increasing edge moment on an S–S–S–F square plate for

n ¼ 0:3: (Maximum displacements marked with �Þ:
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taking a few terms of the series. Indeed, for these examples at least 20 terms were needed (except
for unloaded S–S–S–S plate), and typically more than 30. Also notable was the relatively wild
character of the convergence. It is not monotonic, but oscillatory. Moreover, the oscillation
amplitude does not necessarily decrease term-by-term as terms are added. Most astonishingly,
solutions could not even be established numerically for small numbers of terms because of the
extreme oscillation then present. However, as Tables 1 and 2 show, as sufficient terms of the
polynomials are used, the series and frequencies converge correctly, and exactly.
Some previous results have appeared for the buckling case, which is a special case of the free

vibration problem for the loaded plate, obtained by the method of energy or the method of
integration of the differential equation. However, no other results are known for free vibration
problem, except for those recently published for the S–F–S–F [3] and S–C–S–C [4] plates.
Also very interesting is that Figs. 2–4 demonstrate that for three of the nine cases, the

fundamental frequency of the rectangular plates is initially increased as in-plane bending moment
is applied. This may be surprising, because one-half of the stress causing the moment is
compressive, and compressive stresses typically decrease frequencies. And it is well known that
large in-plane moments will cause severe decreases in frequencies, approaching zero when the
plate buckles. The authors are unaware of any other results in published literature which show an
initial increase in a plate fundamental frequency when compressive stress is applied.
The present study was limited to plates having linearly varying in-plane stresses applied to the

simply supported edges, their resultants being in-plane pure moments (couples), with no resultant
forces. The method used could have been applied equally well to more general linear stress
variations. However, one cannot generalize this statement to other polynomial variations of sx

with y along the edges x ¼ 0 and a; because the resulting stress components within the plate
(determined from a plane elasticity solution) would result in all three stress components
ðsx; sy; txyÞ being functions of both x and y; and an exact, variables separable solution of the free
vibration problem would be intractable.
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